Технические разделы

Электрические схемы RC- и RL-цепи

В настоящее время имеется большое количество различных пакетов прикладных программ (ППП), используемых в инженерной практике. Графические интерфейсы многих ППП представляют собой стандартный многооконный интерфейс с ниспадающими и разворачивающимися меню и с характерными для Windows-приложений разделами: File, Edit, Options, Windows и т.д. Поэтому, освоив один из пакетов, пользователь сравнительно легко может перейти к использованию и других ППП.

Пакеты программ схемотехнического проектирования и моделирования семейства Micro-Cap (Microcomputer Circuit Analysis Program - «Программа анализа схем на микрокомпьютерах») фирмы Spectrum Software относятся к наиболее популярным системам автоматизированного проектирования электронных устройств. Последние версии Micro-Cap (далее МС), обладая большими сервисными возможностями, позволяют выполнять графический ввод и редактирование проектируемой схемы, проводить анализ характеристик аналоговых, цифровых и смешенных аналого-цифровых устройств. С помощью МС можно осуществить анализ электрических схем по постоянному току, рассчитать переходные процессы и частотные характеристики проектируемых схем, провести оптимизацию параметров схемы. Программы МС имеют средства синтеза пассивных и активных аналоговых фильтров, средства моделирования функциональных схем аналоговых и цифровых устройств, обладают возможностями построения 3-мерных графиков результатов моделирования и многое другое.

Электрические схемы RC- и RL-цепи с подсоединенными к ним источниками напряжения e(t) показаны на рис. 1.

Рис. 1

Простейшие электрические цепи, содержащие один энергоемкий элемент (конденсатор или индуктивность), описываются дифференциальными уравнениями первого порядка и поэтому называются электрическими цепями первого порядка. Цепи первого порядка обладают свойством инерционности, т.е. быстрое изменение приложенного к цепи напряжения независимого источника e(t) приводит к плавным изменениям напряжения на емкости (рис. 1, а) или тока в индуктивности (рис. 1, б).

При скачке напряжения e(t) = E0 ·1(t) на входе RC-цепи происходит заряд конденсатора током i(t). По мере увеличения заряда на обкладках конденсатора увеличиваются напряжение на конденсаторе UC(t) и энергия электрического поля, накапливаемого в конденсаторе. Для увеличения энергии конденсатора внешние силы (э. д. с. источника) должны совершить продолжительную работу, преодолевая силу кулоновского поля конденсатора C и сопротивление резистора R. Поэтому напряжение на конденсаторе в RC-цепи меняется плавно, стремясь к величине скачка входного воздействия E0:

.

Величина τ = RC называется постоянной времени и является важной характеристикой RC-цепи, определяющей скорость заряда конденсатора. Ток в цепи определяется выражением , а напряжение на резисторе будет меняться по закону .

В RL-цепи (рис. 1, б) изменение тока i(t) от внешнего источника e(t), протекающего через индуктивность, порождает явление самоиндукции, т.е. возникновение индукционного тока за счет изменения магнитного потока, сцепленного с индуктивностью L. Возникающая вследствие этого э. д. с. самоиндукции препятствует изменению тока в RL-цепи. Поэтому при подаче на вход RL-цепи скачка напряжения e(t) = E0 ·1(t) ток в цепи будет плавно увеличиваться, стремясь к своему максимальному значению I0 = E0/R. При этом увеличивается и энергия магнитного поля, накапливаемого в индуктивности. Постоянная времени RL-цепи определяется как τ = L/R и характеризует скорость изменения тока в цепи при воздействии на RL-цепь единичного скачка напряжения: . Напряжение на резисторе, очевидно, будет меняться по закону .

Линейные цепи первого порядка широко применяются для преобразования формы импульсных сигналов. Например, если в RC-цепи выходной сигнал снимается с емкости (рис. 6, а), то такая RC-цепь выполняет операцию приближенного интегрирования входного сигнала и называется интегрирующей RC-цепью. Если же выходной сигнал снимается с сопротивления, то RC-цепь выполняет операцию приближенного дифференцирования и называется дифференцирующей RC-цепью. Интегрирующая RC-цепь работает как фильтр нижних частот (ФНЧ), пропуская низкочастотные колебания и подавляя высокочастотные. Дифференцирующая RC-цепь напротив пропускает высокочастотный сигнал и подавляет низкочастотный, т.е. работает как фильтр высоких частот (ФВЧ).

RL-цепь (рис. 1, б) так же можно рассматривать как интегрирующую (выходной сигнал UR(t) снимается с резистора) или дифференцирующую (выходной сигнал - UL(t)) цепь и соответственно как фильтр нижних (ФНЧ) или высоких (ФВЧ) частот.

На рис. 7 приведены эпюры воздействующего напряжения e(t), напряжения UC(t) и тока iL(t) в рассмотренных схемах, полученные с помощью МС8. На графиках рис. 7 также показаны величины постоянных времени τ1 и τ2 соответственно для RC- и RL-цепей.

Рис. 2

Радиотехнические схемы, как правило, обладают частотно-избирательными свойствами, т.е. при воздействии на вход схемы гармонического колебания коэффициент передачи схемы (от входа к выходу) зависит от частоты входного сигнала. Зависимость К(f) = =Umвых/Umвх, где Umвых и Umвх - амплитуды выходного и входного колебаний, называется амплитудно-частотной характеристикой (АЧХ). Частота, на которой коэффициент передачи К(f) = 0.707 (-3дБ), называется граничной (fГР) и для фильтров ФНЧ и ФВЧ она рассчитывается по формуле fГР = 1/2πτ. Поскольку при расчете АЧХ (режим анализа AC) программа МС8 подает на вход схемы колебание переменной частоты с амплитудой 1 В, то К(f) = Umвых. Это значит, что для получения в режиме АС амплитудно-частотной характеристики необходимо в окне задания параметров моделирования (AC Analysis Limits) ввести переменную, определяющую напряжение в точке выхода схемы (V(2) - для схем, изображенных на рис. 1. При изменении частоты воздействующего колебания меняется не только амплитуда выходного сигнала, но и фаза выходного колебания при неизменной фазе входного гармонического воздействия. Зависимость фазового сдвига от частоты называется фазочастотной характеристикой (ФЧХ) схемы. Для получения ФЧХ достаточно в окне AC Analysis Limits ввести переменную ph(V(1)). На рис. 8 показаны АЧХ и ФЧХ фильтра нижних частот (рис. 1, а), полученные с помощью программы МС8. На графиках отмечены точки, соответствующие верхней граничной частоте fГР = 3,7 МГц, фазовый сдвиг на fГР составляет 44,990. Для определения координат этих точек использовались команды:

Go to Y (Shift+Ctrl+Y) - перемещение выбранного электронного курсора в ближайшую точку с заданной координатой по оси Y;

Go to X (Shift+Ctrl+X) - перемещение выбранного электронного курсора в точку с заданной координатой по оси X;Left Cursor - нанесение на график координат левого курсора.

Рис. 3

Электрические цепи второго порядка содержат два энергоемких элемента - конденсатор и индуктивность. Математической моделью таких цепей служит дифференциальное уравнение второго порядка, поэтому порядок цепи так же равен двум. В идеале резистор в этих цепях может отсутствовать (R = 0), однако и соединительные проводники и катушка индуктивности имеют сопротивления, отличные от нуля (R > 0). Поэтому цепи второго порядка иногда называют RLC-цепями. В зависимости от того, каким способом в цепи соединены между собой индуктивность и конденсатор (последовательное или параллельное соединение), различают последовательный и параллельный колебательные контуры (рис. 4).

Рис. 4

RLC-цепи качественно отличаются от цепей первого порядка. В частности, в зависимости от соотношений между величинами элементов цепи переходные процессы в RLC-цепи носят апериодический (как в цепях первого порядка) или колебательный характер. В частотной области RLC-цепь обладает резонансными свойствами и рассматривается как узкополосный фильтр.

При выполнении моделирования переходных процессов в последовательном колебательном контуре ко входу схемы следует подключить источник импульсного напряжения (V1) с нулевым внутреннем сопротивлением, например Pulse Source (рис. 4, а). Тогда при окончании импульсного воздействия (т.е. при V(1) = 0) в RLC-цепи начинаются переходные процессы, зависящие только от величины заряда, накопленного в конденсаторе, и от параметров самой цепи.

По этим же соображениям ко входу параллельного колебательного контура (рис. 4, б) подключен источник импульсного тока с нулевой проводимостью. Тогда по окончании импульсного воздействия тока (I(0,1) = 0) только энергия магнитного поля, накопленная в индуктивности, и параметры схемы будут определять характер переходных процессов в контуре.

RLC-цепь характеризуется следующими параметрами:

- резонансная частота цепи (рад/с);

- декремент затухания, определяет скорость спада свободных колебаний в цепи;

- частота свободных колебаний цепи (рад/с);

- добротность RLC-цепи.

Частота f, выраженная в герцах, связана с круговой частотой ω известным соотношением: f = ω/2π [Гц].

При Q < 0,5 переходные процессы в цепи носят апериодический характер. Например, в схеме, приведенной на рис. 9, а, заряженный предварительно от источника V1 конденсатор C1 будет разряжаться через последовательно соединенные индуктивность L1, резистор R1 и внутреннее сопротивление источника (равное нулю). Энергия, накопленная в конденсаторе, будет полностью рассеяна в резисторе R1.

При Q > 0,5 RLC-цепь имеет режим свободных колебаний. Т.е. после окончания воздействия импульсного сигнала в RLC-цепи начинается колебательный процесс. В схеме рис. 9, а энергия, накопленная в конденсаторе (энергия электрического поля) в процессе его разряда перейдет в энергию магнитного поля индуктивности, что в свою очередь, вследствие самоиндукции, приведет к перезарядке конденсатора и т.д. Возникшие в RLC-цепи колебания напоминают колебания механического маятника, которые постепенно затухают из-за потерь при трении в подвеске маятника. Подобную роль в RLC цепи выполняет сопротивление резистора R1, препятствующего протеканию тока в контуре. При запас энергии, накопленный в цепи, в процессе возникших колебаний будет рассеиваться в сопротивлении R1, постепенно снижаясь до нуля.

В случае, когда добротность контура Q >> 1, возникшие в RLC цепи колебания носят устойчивый и продолжительный характер. В колебательном контуре отдельный резистор, как правило, отсутствует, однако при анализе схемы сопротивление R, обусловленное потерями в индуктивности, конденсаторе и монтажных проводниках, необходимо учитывать. Чем меньше сопротивление потерь, тем более узкополосным является фильтр.

Рис. 5

На рис. 5, а показаны диаграммы изменения падения напряжения на конденсаторе С1 и тока, протекающего в последовательном контуре (рис. 4, а) в режиме свободных колебаний при Q >> 1. Из рис. 5, а следует, что полученные гармоники сдвинуты относительно друг друга по фазе на 900: при максимальном (по модулю) падении напряжения на конденсаторе ток в цепи равен нулю, а при максимальном токе -напряжение на конденсаторе равно нулю (т.е. конденсатор полностью разряжен).

На рис. 5, б изображены АЧХ и ФЧХ последовательного контура (выходное напряжение снимается с узла 2 схемы рис. 4, а). На резонансной частоте (f0 = 3,183 МГц) коэффициент передачи цепи близок к нулю, поэтому такой фильтр называют режекторным. Полоса режекции фильтра по уровню 0,707 составляет 31,83 кГц. Для измерения полосы режекции (или полосы пропускания фильтра, показанного на рис. 4, б) и нанесения на график горизонтальной размерной линии необходимо в режиме электронного курсора воспользоваться командами Go to Y () и Tag Horizontal.

В линейных цепях параметры используемых элементов (резисторы, конденсаторы, индуктивности) не зависят от значений приложенных к ним напряжений или протекающего через них тока. Однако линейная теория анализа цепей оказывается справедливой только в определенных пределах этих значений. Так, сопротивление R= 10 Ом означает, что отношение падения напряжения на элементе к протекающему через него току равно десяти, независимо от величины этого тока. В действительности же любой реальный элемент таким постоянством не обладает. Например, сопротивление реальных резисторов зависит от температуры, которая в свою очередь определяется не только окружающей средой, но и тепловой энергией, рассеянной в резисторе за счет протекающего через него тока.

На практике при анализе линейных цепей непостоянством параметров элементов цепи часто пренебрегают в силу незначительности их изменений. В частности, зависимость сопротивления резистора от тока можно существенно уменьшить, если при проектировании схемы применить в электрической схеме резистор, способный рассеять расчетную мощность, преобразованную в теплоту. Тогда температура резистора, а значит и его сопротивление, будет определяться в основном температурой окружающей среды, т.е. условиями эксплуатации проектируемого устройства.

Существует обширный класс радиотехнических элементов и устройств, параметры которых существенно зависят от токов или напряжений. Такие элементы называются нелинейными (НЭ) и широко используются в радиотехнике. Для количественного описания свойств НЭ необходимо задать зависимости, определяющие связь между параметром элемента и величиной приложенного напряжения или тока. Такие зависимости принято называть характеристиками нелинейного элемента. В зависимости от типа характеристики можно выделить следующие простейшие нелинейные элементы.

Нелинейный резистивный элемент - полностью определяется зависимостью между током и напряжением: i=f(u) или u=f(i). Данная зависимость называется вольт-амперной характеристикой (ВАХ) нелинейного элемента. Примерами резистивных НЭ являются диоды, стабилитроны, варисторы и др.

Нелинейная емкость - характеризуется нелинейной зависимостью накопленного заряда от приложенного напряжения, т.е. по сути, зависимостью емкости элемента от напряжения: C=f(u), называемой вольт-фарадной характеристикой. В качестве примера элемента с нелинейной емкостью следует назвать варикап, который широко используется в радиоприемных и передающих устройствах для изменения резонансной частоты колебательных контуров.

Нелинейная индуктивность - характеризуется нелинейной связью потокосцепления и тока, которая задается функцией: L=f(i).

В качестве примера более сложного нелинейного устройства следует отметить транзисторы, которые относятся к классу безынерционных нелинейных четырехполюсников (рис.6). В этих полупроводниковых приборах выходной ток (в случае биполярного транзистора - ток коллектора) является сложной функцией не только напряжения, приложенного к коллектору, но и тока в базе транзистора.

Рис. 6

Нелинейность характеристик рассмотренных выше элементов принципиальна для их функционирования в составе соответствующих электронных устройств

Основные этапы моделирования

Еще статьи по технике и технологиям

Расчет и оптимизация характеристик системы связи
Сообщение непрерывного источника передается цифровым методом по каналу связи. В канале связи используются модуляция и помехоустойчивое (корректирующее) кодирование. Необходимо дать описание процессов в отдельных блоках заданной системы ...

Технический контроль электронной подстанции с опорно–транзитной станцией в системе коммутации DX-200
Современный этап развития телефонных сетей связи в нашей стране характеризуется переходом к новому поколению систем коммутации с распределенным управлением на базе серийно выпускаемых микро - ЭВМ и на базе специализированных процессов. ...

© 2018 | www.techexpose.ru